Isohedral Polyomino Tiling of the Plane
نویسندگان
چکیده
منابع مشابه
A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino
A plane tiling consisting of congruent copies of a shape is isohedral provided that for any pair of copies, there exists a symmetry of the tiling mapping one copy to the other. We give a O(n log2 n)-time algorithm for deciding if a polyomino with n edges can tile the plane isohedrally. This improves on the O(n18)-time algorithm of Keating and Vince and generalizes recent work by Brlek, Provença...
متن کاملEnumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry
We describe computer algorithms that can enumerate and display, for a given n > 0 (in theory, of any size), all n-ominoes, niamonds, and n-hexes that can tile the plane using only rotations; these sets necessarily contain all such tiles that are fundamental domains for p4, p3, and p6 isohedral tilings. We display the outputs for small values of n. This expands on earlier work [3]. 1 Polyominoes...
متن کاملAn Optimal Algorithm for Tiling the Plane with a Translated Polyomino
We give aO(n)-time algorithm for determining whether translations of a polyomino with n edges can tile the plane. The algorithm is also a O(n)-time algorithm for enumerating all regular tilings, and we prove that at most Θ(n) such tilings exist.
متن کاملPolyomino Convolutions and Tiling Problems
We define a convolution operation on the set of polyominoes and use it to obtain a criterion for a given polyomino not to tile the plane (rotations and translations allowed). We apply the criterion to several families of polyominoes, and show that the criterion detects some cases that are not detectable by generalized coloring arguments.
متن کاملA parallelogram tile fills the plane by translation in at most two distinct ways
We consider the tilings by translation of a single polyomino or tile on the square grid Z. It is well-known that there are two regular tilings of the plane, namely, parallelogram and hexagonal tilings. Although there exist tiles admitting an arbitrary number of distinct hexagon tilings, it has been conjectured that no polyomino admits more than two distinct parallogram tilings. In this paper, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete & Computational Geometry
دوره 21 شماره
صفحات -
تاریخ انتشار 1999